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Fresnel’s theorem used in optical crystallography is applicable to fabric analysis, strain analysis and stress
analysis due to the similarity in formulation between the optical indicatrix, the fabric ellipsoid, the strain
ellipsoid and the stress ellipsoid. It describes the relationship between the fabric trace on any section and
the circular sections of the fabric ellipsoid. Its explicit expression is equivalent to the expression of the
Wallace-Bott hypothesis for stress inversion. A new method is thus developed in this paper to determine

the fabric ellipsoid from no less than four independent sectional measurements. Artificial and real
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examples are taken to illustrate the feasibility of this new method. The advantage of the method over
some of the existing graphic methods is that it can deal with any set of sectional measurements.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Determining the strain in rock is of practical use in quantifying
the plastic deformation that the rock has undergone. Normally,
strain markers are first measured on several differently-oriented
section planes to estimate sectional strain ellipses. Assuming the
strain to be homogeneous on the scale of the outcrop, these strain
ellipses are then used in some way to determine the strain ellipsoid.
Numerous methods of strain analysis (Ramsay, 1967; Ramsay and
Huber, 1983) have been developed for the first of these steps, but
this paper only concerns the second step. There are two categories
of procedure for determining the strain ellipsoid from the sectional
strain ellipses, numerical (e.g. Shimamoto and Ikeda, 1976; Oertel,
1978; Milton, 1980; Gendzwill and Stauffer, 1981; Owens, 1984;
Shao and Wang, 1984; Wheeler, 1989; De Paor, 1990; Robin,
2002; Shan, 2008; Shan et al., 2008) and graphic (Ramsay, 1967;
Lisle, 1976). A majority of methods in the former category differ
in the way of tackling the consistency of the strain ellipses on the
sections, and the latter category includes the distribution of elon-
gation and the Tocher’s (1964) crystallographic method (Lisle,
1976). It is worthy to note that, some or all of these various
methods are also applicable to theoretically similar fabrics in other

* Corresponding author. Guangzhou Institute of Geochemistry, Laboratory of
Marginal Sea Geology, Wushan, Guangzhou, Guangdong 510064, China. Tel.: +86
20 85292403; fax: +86 20 85290130.

E-mail address: shanyehua@yahoo.com.cn (Y. Shan).

0191-8141/$ — see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jsg.2011.06.009

disciplines, for example, the optical crystallography (Shubnikov,
1960) and paleomagnetism (Lanza and Meloni, 2006).

In spite of the close relationship between strain and stress, nearly
all existing methods of inverting the stress from fault/slip data
measured in the field (see the briefreviews of Nemcok and Lisle, 1995;
Shan et al., 2003; and Zalohar and Vrabec, 2007) appear to have
nothing to do with the strain methods mentioned above. They are
based upon the Wallace-Bott hypothesis that assumes the parallelism
between the resolved shear stress on the fault plane and the observed
slip line on it. However, Shan and Li (2008) recently found a similarity
in formulation between the equation describing the sectional strain
ellipse and the equation describing the hypothesis for a given fault/
slip datum. In this sense, the stress may be estimated using one of the
strain methods if the fault/slip data are transformed into corre-
sponding sectional measurements; or vice versa. For example, they
use the Tocher’s (1964) graphical method to determine on the
stereogram the stress from measured fault/slip data.

Following the study of Shan and Li (2008), this short communi-
cation further addresses the similarity between strain analysis and
palaeostress analysis. As shown below, Fresnel's theorem (see
Shubnikov, 1960, p.70) can be described by an explicit equation that is
identical in formulation to the equation of the Wallace-Bott hypoth-
esis. This similarity permits the use of the moment method (Fry, 1999;
Shan et al., 2003) in solving a set of such over-determined equations
for the strain ellipsoid, and simplifies the conversion between
sectional measurements of strain ellipses and fault/slip data.

The definitions of symbols used in this paper are listed in Table 1.
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Table 1
The definitions of symbols used in the paper.
Symbols Definitions Comments
0; Pole to the circular section j=1,2; Figs. 1 and A1;
of the fabric ellipsoid Egs. (A23) and (A24)
F Pole to an exposure or section Fig. 1
S fabric trace Fig. 1
P P=FxS Fig. 1b
R; Ri=F x O1,and R, = F x O3 j=1,2;Fig. 1b
R Ry = Ri/|Ri|.and Ry = Ry/[Ra| j=1,2; Fig. 1b
P; Projections toward line FP of j=1,2; Fig. 1b
Ry and R,
I Length of a vector
AB Euclidean distance between
points A and B
A-B Dot product of vectors A and B
0ji The i-th component of the pole i=1,2,3;j=1,2; Egs.(9),
to the j-th circular section (11), (12), (A1), (A3)—(A17),
(A19), (A20), (A25), (A26),
and (A29)
S The i-th component of vector S i=1,2,3;Egs.(9),(11), (12)
Di The i-th component of vector P i=1,2,3;Eqgs. (9),(11),(12)
n; The i-th component of the normal i=1, 2, 3; Eq. (13)
to a fault plane
I; The i-th component of the vector i=1, 2, 3; Eq. (13)
perpendicular to the slip line
on the fault plane
aij The component of the stress gij = gji, ij = 1, 2, 3; Eq. (13)
€ The square of the lengths of i=1,2,3; Eqgs. (A1), (A6),
the X-, Y- and Z-coordinate (A7), and (A18)—(A30)
axes of the fabric ellipsoid
fori=1, 2, and 3, respectively
kand t Unknown constants Eqgs. (A6), (A7), (A18)—A(22),
and (A27)—(A30)
Vv Acute angle between either 0; Fig. A1; Eqgs. (A25), (A26)
or O and the long axis of the
fabric ellipsoid
Emaxe-Eint The long, intermediate and Fig. A1
and emin  short axes of the fabric ellipsoid

2. Fresnel’s theorem

In optical crystallography, the directions of extinction on sections

of different orientation are controlled by the character of the optical
indicatrix. Here we consider the common case of an indicatrix with
the shape of a triaxial ellipsoid where there exist two circular
sections, O1 and O-. In this case, the indicatrix is well defined by the
locations of the circular sections. Fresnel’s theorem states that (see
Shubnikov, 1960, p.70), for a given exposure (section) plane with

a

~—|

apole Fand a fabric trace S on the exposure plane, the angle between
planes FO1 and FO, is bisected by plane FS (Fig. 1a), or

/SFO; = /SFO, (1)

This highlights a way of determining the optical indicatrix by
looking on the stereogram at the sides of plane FS for the areas
where 0 and O, are located. Tocher (1964) developed a simple
graphic method that reduces the area of the greater side by sub-
tracting from it a part symmetrical to the smaller side along the
trend of the great circle containing points F and S. As the optical
indicatrix is analogous to the strain ellipsoid, this method was later
applied to strain analysis (Lisle, 1976), and even to paleostress
analysis (Shan and Li, 2008).

In the light of the poles to the planes in Fig. 1a, Eq. (1) is
rewritten as

LPFR} = LPFR, )
or
PR} = PR, 3)

where P, R} and R}, are poles of planes FS, FO and FO, (Fig. 1b),
respectively, and W is the Euclidean distance between points P
and R, (i = 1 or 2). P = F x S, R} = Ri/|IRy[, R, = Ry/|IRa],
R1 = F x 03, and Ry = F x Oy, where |||| is the length of a vector.
Because R) and R} lie at the sides of a plane normal to S, their dot
products with the normal have similar value but different sign.

SR = —SR, (4)
R, R,
. Y 5
IRy R (3)
SRR
sl S | e 81§ 6
SR~ Ry (6)

Let P; and P, stand for points where Ry and R; are projected

toward line FP. Obviously, AFPR|=AFPR}, AFPiRy=AFP;R;.
Therefore,
[Rill _ FPy _ P-Ry

__ PR 7
IRy ~ FP, ~ PR, ()

where FP; is the Euclidean distance between points Fand P; (i= 1 or 2).

b

Fig. 1. According to Fresnel’s theorem, on the stereogram (a) plane FS bisects the angle between planes FO; and FO,, or ~SFO; = £SFO,, where F is the pole to a sectional
measurement, S is the fabric trace on the section, and 0, and O, are the poles to the circular sections of the fabric ellipsoid, and (b) ZPFR} = £PFR}, where P, R} and R, are poles of
planes FS, FO; and FO,. P = F x S, Ry = Ry/|[R1|l, R, = Ry/|R|l, Ri = F x Oy, and R, = F x Oy, where |||| is the length of a vector. APFR} =APFR), and APFR; =APFR;.
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Substituting Eq. (7) into Eq. (6) gives
SRy PRy

SR, PR ®)

Let Oy = [011 012 013], 02 = [021 02 023],S=[s1 Sz s3]
and P = [p; p, p3]. After rewriting Eq. (8) in terms of vector
components, we have the following expression,

251P1011021 + 252P2012022 + 253P3013023 + (S1P2 + S2P1)
% (011022 + 012021) + (S1P3 + $3P1)(011023 + 013021)
+(51P3 +52P3)(012023 + 013022) = 0 9)
Among the six composite variables on the left-hand side, the

first three are dependent because, as previously defined (Fig. 1b),
vectors P and S are mutually perpendicular.

S1Pp1+S2p2 +s3p3 = 0 (10)
Solving s3ps3 from Eq. (10) and inserting it into Eq. (9) leads to,

251p1(011021 — 013023) + 252P2(012022 — 013023)
+(S1P2 + $2P1)(011022 + 012021) + (S1P3 + S3P1)
(011023 + 013021) + (S1P3 + 52P3)(012023 + 013022)
—0 (11)

This algebraic equation describes Fresnel’s theorem in terms of
the poles to the circular sections of the fabric ellipsoid, O1 and O,. As
the bearings and plunges of the poles are unknown, a minimal
number of four independent exposures are required to solve in
some way such equations for them, under the constraint of unit
length of the poles. Once their orientations are obtained, the
directions and relative magnitudes of the major axes of the corre-
sponding ellipses are readily determined from them (Lisle, 1976;
see the Appendix). However, the way to the direct solution to Eq.
(11) is complicated due to the nonlinearity.

3. Comparison

Rewriting Eq. (9) in matrix form,

2011021 011022 + 012021 0110223 + 0]13021
[s1 S2 S3] . 2012077 01203 + 013022
symmetrical 2013033
D1
x|pa| =0 (12)
pP3

As shown in the Appendix, the relative fabric ellipsoid (Shan and
Li, 2008) is described by the middle matrix on the left-hand side,
from which we know only the principal directions and the shape of
the ellipsoid.

On the other hand, the most important assumption for stress
inversion is the Wallace-Bott hypothesis that the resolved shear
stress on the fault plane is parallel to the observed slip line on the
plane (Carey and Brunier, 1974),

o1 o012 013 [h
[my ny mn3]f{oy 0 03| (L] =0 (13)
031 03 033] |k

where n; is the component of the normal to a fault plane, [; is the
component of the vector perpendicular to the slip line on the fault
plane, and ¢;; is the components of the stress (i,j = 1,2,3). gj; = 7y;. For
a group of no less than four fault/slip data of a single tectonic phase,
a set of such equations determined or over-determined are solved
simultaneously in some way for the reduced stress, including the
principal directions and Bishop’s (1966) stress ratio.

Comparing Eq. (12) with Eq. (13) reveals no difference between
them. For both equations, on the left-hand side the two vectors, the
first and third matrixes, are mutually perpendicular and the middle
matrix is symmetrical. This demonstrates the similarity in formula-
tion between fabric analysis and stress inversion. This further
inspires us to solve for the positions of 01 and O, in a simpler way that
uses the moment method (Fry, 1999; Shan et al., 2003) to determine
the relative strain ellipsoid, and then calculates the orientations of
the circular sections from the known ellipsoid. Fry (1999) and Shan
et al. (2003) give detailed description about the moment method.

4. Procedure

The above-mentioned method for determining the circular
sections of the fabric ellipsoid is implemented as follows:

1) Based upon the fabric measurements including the orienta-
tions of the sections (F) and the fabric traces (S) on the sections,
calculate point P, according to P = F x S.

2) In a way similar to that for processing the fault/slip data (Fry,
1999; Shan et al., 2003), vectors P and S are used to calculate
the datum vectors in parameter space, from which the data
matrix is made.

3) Use the moment method (Fry, 1999; Shan et al., 2003) to solve
for the relative fabric ellipsoid that corresponds to the eigen
vector in respect to the least eigen value of the data matrix.
Once a solution to the relative ellipsoid is obtained, its negative
is another possible solution. Discriminating between the two
choices requires the consideration of the orientations of the
observed fabric traces in relation to the calculated ones. The fit
percentage is defined as the percent of sectional measurements
where the acute angles between the observed trace and the
calculated trace on the section are less than 45°. Only the
solution having a fit percentage of 100% is accepted with
confidence; otherwise, it is discarded.

4) Determine the eigen vectors and eigen of the relative fabric
ellipsoid by use of the Jacobi method (see Shan et al., 2003,
2008). The eigen vectors in order of an increasing eigen value
corresponds to the principal directions of the long, interme-
diate and short axes of the fabric ellipsoid, respectively, and the
eigen values are used to calculate the acute angle (V) between
01/0; and the long axes, a measure of the shape of the fabric
ellipsoid (Lisle, 1976; see the Appendix).

5) Calculate the orientations of circular sections from the prin-
cipal directions and angle V that are determined in the previous
step (see the Appendix).

5. Tests using artificial examples

In order to show the feasibility of the above-proposed method,
artificial examples are chosen in this section. A set of four inde-
pendent artificial measurements (Fig. 2) is first generated at random
under the prescribed fabric ellipsoid where the long axis is directed
upwards, the short axis is directed toward the east, and V is 46.58°.
The set has no measurement error. Then, a certain measurement
area is added to the bearings of the fabric traces, and their plunges
are recalculated so that the considered traces lie in the sectional
planes. There are two choices for combining the error, addition and
subtraction, for each individual sectional measurement; hence, we
have an ensemble of 24 sets having a certain amount of measure-
ment error. The measurement error is assigned with a value having
a range of 0—10° in increments of 0.5°. Figs. 3 and 4 show results
from applying the proposed methods to these numerous sets.

In Fig. 3, the calculated fabric ellipsoid from the primary set
matches the prescribed fabric ellipsoid very well. When the
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Fig. 2. Lower-hemisphere, equal-area projection of an artificial set of four measure-
ments without any measurement error. The great circle represents the plane that
contains the fabric trace shown in dot and the pole to the section, and the plus symbol
marks the poles to the circular sections of the fabric ellipsoid obtained using the
proposed method.

measurement error is taken into consideration, there appears
a chance of having mismatch between the two ellipsoids. The
mismatch strongly tends to increase with the amount of the
measurement error. What is worse, if the mismatch is sufficiently
large, there may exist at least one of 24 sets with a certain measure-
ment error, whose calculated fabric ellipsoid never fits all of the fabric
traces or has a fit percentage of less than 100%. This appears to happen
only if the measurement error is larger than 3.5° (Fig. 4).

6. Applications

Three real examples taken from (Lisle, 1976; Table 2) are
measurements on the cozonal sections i.e., a set of section planes
that share a common axis. They represent a case of strong foliation
and weak lineation, very weak foliation and weak lineation, and
weak foliation and strong lineation, respectively (Lisle, 1976).
Applying the proposed method to them gives rise to results shown
in Fig. 5 and listed on Tables 2, 3. For comparison, the estimated
fabric ellipsoids using the Tocher’s (1964) method (Lisle, 1976) are
also listed on Table 2.

6.1. Set one

For this set, the calculated fabric ellipsoid by our method badly
matches the estimated fabric ellipsoid by the Tocher’s method,
although they both have an almost vertical dip angle of the foliation
(Table 2). For the former, the first measurement appears odd in that
its measured trace is almost perpendicular to the calculated trace
on the sectional plane (Fig. 5a—b).

Table 3 lists the eigen values of data matrix for the set. The least
eigen value is zero because the set has a minimal number of 4. The
second least eigen value is about 0.01, much smaller than the third
least eigen value, 0.84. This most probably suggests the dependency
of the measurements in the set that fails to define a hyperplane in
parameter space, to which the normal is the sole solution we look
for (Shan and Fry, 2006). Were it true there would exist an infinite
number of acceptable solutions, instead, that can be determined
using the method by Shan and Fry (2006).

Fig. 6 displays the range of the poles to the circular sections of all
acceptable ellipsoids. Approximately in the range lie the poles to
the circular sections of the estimated ellipsoid using the Tocher’s
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Fig. 3. Comparison of the prescribed fabric ellipsoid with the calculated fabric ellip-
soids from artificial sets with a measurement error of 0—10°. (a)—(c) is for the long
axis, the short axis, and the acute angle (V) between the long axis and one of the poles

to the circular sections of the fabric ellipsoid, respectively. See the text for more
explanation.
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Fig. 4. The number of sets whose calculated fabric ellipsoids have a fit percentage of
100%. In this case where the primary set has four measurements, the total number of
sets with a given measurement error is 16.
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Table 2

Comparison between the fabric ellipsoids estimated by applying the Tocher’s (1964) method and the above-proposed method, respectively, to three real sets from Lisle (1976).
Vis the acute angle between the long axis and one of the poles to the circular sections of the fabric ellipsoid. The fit percentage is the percent of sectional measurements that

have an acute angle of less than 45° between the measured and the calculated traces.

Sets Sections Fabric traces Methods Fabric ellipsoid Fit percentage
Foliation Lineation Vv

1 90/90 180/88 Tocher (1964) 55/88 143/34 72.5 100
15/90 105/85

54/90 144/33 This paper 81/86 171/1 61.9 80
144/90 54/85

2 90/90 180/79 Tocher (1964) Weak 121/67 =0 100
2/90 92/69

39/90 129/66 This paper 198/84 120/65 323 100
126/90 36/90

3 133/90 223/40 Tocher (1964) 263/62 178/11 50.5 100
35/90 305/47

90/90 180/9 This paper 265/64 179/9 48.6 100
181/90 271/64

method. This makes us believe in the dependency of the four
measurements in the set. In this example, the Tocher’s method
seems to have the advantage that it incorporates into graphical
determination some empirical observations, based upon the spatial
interrelationship among the measurements on the stereogram, that
appears useful in reducing the range of the acceptable solutions.

6.2. Set two

There is some similarity and some difference between the fabric
ellipsoids by Lisle (1976) and the proposed method, respectively,
for this set. Both estimates have a similar lineation, but they have
a different angle between the poles to the circular sections of the
ellipsoid (Table 2). Actually, Lisle (1976) did not make the estima-
tion using the Tocher’s method but by visual appreciation, as he
considered the unfavorable clustering around the origin of the
traces. For the latter, the poles lie at the sides of each great circle
that consists of the normal to the sectional plane and the trace on it,
and the fit percentage is 100% (Fig. 5c—d). The latter result is
therefore accepted with more confidence.

6.3. Set three

For this set, the fabric ellipsoids by the Tocher’s method and the
proposed method, respectively, match each other very well
(Table 2). The good match is most likely attributed to the spread of
data vectors that leads to a well-posed hyperplane in parameter
space (Shan and Fry, 2006). This spreading can be evaluated from
the distribution of eigen values of data matrix for the set (Table 3).
The least second eigen value is close to the least third eigen value,
and much larger than the least eigen value.

7. Discussion

As described above, Fresnel's theorem can explicitly be
expressed in Eq. (11), from which we developed a new method for
determining the fabric ellipsoid from independent sectional
measurements.

7.1. Relationship between strain and stress analyses

Shan and Li (2008) recently compared the equation describing
the sectional strain ellipse with the equation describing the
Wallace-Bott hypothesis for a given fault/slip datum, and noted the
similarity in formulation between them. This relationship becomes
more apparent in this paper where Eq. (12) is directly comparable

to Eq. (13). It further permits a simple transformation from
sectional measurements of strain ellipses to fault/slip data, or from
fault/slip data to sectional measurements of strain ellipses. For
example, a sectional measurement of strain ellipse or (s p) is
equivalent to a fault/slip datum or(n [). Such transformation is
not one-to-one at all, because another fault/slip datum, whose
normal to the fault plane is I and whose vector perpendicular to the
slip line on the fault plane is n, or(l n), satisfies Eq. (13), too. It is
however inappropriate to determinate in some way either the
stress or the strain from a composite set of fault/slip data and
sectional measurements of strain ellipses, as the relationship
between the stress and the strain in rock is generally unknown.

7.2. Advantages and disadvantages

The nonlinear nature of Eq. (11) makes it difficult to solve for the
two poles to the circular sections of the fabric ellipsoid, O1 and O,.
However, instead of direct solution, we determine the fabric ellip-
soid, according to Eq. (12), from which the locations of the poles are
then calculated. This method is quite similar in formulation to Shan
et al. (2008) method, although they are based upon different
theories. Both provide an analytical solution of the fabric ellipsoid
for a set of sectional measurements. Differently, nearly all of other
pre-existing methods have a variety of numerical ways to restore
the strain ellipsoid from strain ellipses measured on the different
sections (e.g. Shimamoto and lkeda, 1976; Oertel, 1978; Milton,
1980; Gendzwill and Stauffer, 1981; Owens, 1984; Shao and
Wang, 1984; De Paor, 1990; Robin, 2002).

The method proposed in this paper has a major advantage over
Tocher’s method and probably other graphic methods in the
applicability to any set of exposures, no matter how points O and
0, are located either at the two sides or at one side of plane FS or
both on the stereogram. However, in the new method graphic
construction is replaced by calculation. This may disappoint some
of structural geologists who prefer visual presentation.

7.3. Measurement error

In Fig. 4, some of the sets start(s) to give an estimate with a fit
percentage of less than 100%, when the measurement error
becomes larger than 3.5°, a little larger in value than the precision
of compass, commonly 2°. This turning point means a lot to
structural geologists who measure the sectional planes and the
fabric traces by compass, and estimate from them the fabric ellip-
soid using the proposed method, the Tocher’s (1964) method, or
others. Besides, the measurement error may be caused by other
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Fig. 5. Lower-hemisphere, equal-area projection of three real sets (Lisle, 1976; Table 2), and comparison between two angles, 2 SFO; and 2 SFO,, for each individual measurement
and the fabric ellipsoids obtained by the Tocher’s (1964) method and the method proposed in this paper, respectively. In Fresnel’s theorem, the two angles equal to each other.
(a)—(Db) are for set one, (c)—(d) for set two, and (e)—(f) for set three. See the caption of Fig. 3 for more explanation.

possible factors including the smoothness of the sectional surface
and the visibility of the fabric trace on the surface. It is thus likely at
times that, in respect to the sectional plane the bearing of the fabric
trace has a larger measurement error than the turning point. That is
to say, in the case of only a minimal number of four measurements,

Table 3
The eigen values of data matrices for three real sets from Lisle (1976; Table 1).

Sets Eigen values there exists a possibility of having a highly inaccurate estimate,
1 1.7527 1.3951 0.8426 0.0096 0.0000 although it is small. A good remedy to this problem is to include
2 2.2100 1.6875 0.0615 0.0410 0.0000 more measurements as much as possible. Additionally, such
3 2.5478 0.8431 0.3805 0.2286 0.0000

inclusion tends to spread the measurements in parameter space,
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Fig. 6. The poles to the circular sections of the acceptable fabric ellipsoids, with a fit
percentage of 100%, that result from a linear mixture of two eigen vectors in respect to
the least and second least eigen values (Table 3). They are displayed as circles having
a radius in proportion to the weight of the eigen vector in respect to the second least
eigen value. They are looked for by use of a grid search in which the weight has a range
of 0—1 in increments of 0.05. The symbol of filled stars represents the poles to the
circular sections of the fabric ellipsoid by the Tocher’s method (Table 2). Lower-
hemisphere, equal-area projection.

which is favorable to the use of the proposed method in deter-
mining the fabric ellipsoid from them.

8. Conclusions

In optical crystallography (see Shubnikov, 1960, p.70), Fresnel’s
theorem describes how the extinction in any section is related to
the circular sections of the optical indicatrix (Fig. 1a). This theorem
is also applicable to fabric analysis and strain analysis due to the
similarity in formulation between the optical indicatrix, the fabric
ellipsoid and the strain ellipsoid (Lisle, 1976). It has an explicit
expression in Eq. (11) in terms of the positions of the circular
sections of the ellipsoid. As we prove, the expression is similar in
formulation to the expression about the Wallace-Bott hypothesis
for stress inversion. This highlights a simple relationship between
strain analysis and stress analysis, as shown by Shan and Li (2008),
and makes it possible to develop an analytical method, similar to
the moment method by Fry (1999) and Shan et al. (2003), to
determine the fabric ellipsoid from sectional measurements.

Artificial and real examples are taken to demonstrate the feasi-
bility of the proposed method. In comparison with the Tocher’s (1964)
method that graphically determines the poles to the circular sections
of the fabric ellipsoid, the proposed method is applicable to any set of
exposures, no matter whether points O; and O, are located either at
the two sides or at one side of plane FS or both on the stereogram.

A minimal number of four independent measurements are
required in the determination. In the case of a set of four or a little
more measurements, care needs be taken for two excuses, data
dependency in relation to the limit of the exposures (Shan and Fry,
2006), and a small possibility of having a highly inaccurate fabric
ellipsoid due to the measurement error.
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Appendix

Proposition: The relative fabric ellipsoid may be defined as

2011021 011022 + 012021 011023 + 013021
. 201202, 012023 + 013022 (A1)
symmetrical 2013073

where 07 and O, are the poles to the circular sections of the triaxial
fabric ellipsoid. O;=[017 012 013] and O,=[0y1 03 03],
where 013 > 0, 023 > 0.

Proof. Let us consider a special case where the axes of the fabric
ellipsoid are along the coordinate axes. The X-, Y- and Z-coordinate
axes are directed toward the east and the north, and upright,
respectively. For a general case that does not show such parallelism,
the present coordinate system may be rotated to meet this need, in
advance. Accordingly, we have an expression of the absolute fabric
ellipsoid in the coordinate system as follows,

eg! 0 0
0 &' 0 (A2)
0 0 ¢!

where ¢1, €2, and ¢3 are the square of the lengths of the X-, Y- and Z-
coordinate axes of the fabric ellipsoid, respectively. Matching the
components of the above expressions leads to

011022 + 012021 = 0 (A3)
011023 + 013021 = 0 (A4)
012023 + 01302 = 0 (A5)
2011031 = key! —t (A6)
201205 = ke;!' —t (A7)
2013093 = ke3! —t (A8)

where k and t are unknown constants that relate the relative fabric
ellipsoid to the absolute fabric ellipsoid.
Eqgs. (A3)—(A5) may be rewritten:

on _ %21 (A9)
012 022
on _ % (A10)
013 023
%12 _ 02 (A11)
013 023

Multiplying the sides of the above equations gives,

(Oﬁ)zz ,(%)2 (A12)
013 023

Similarly, we have
(%)2: ,(%)2 (A13)
013 023
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)=
011 021

Hence,

011 = 0y1 = Ofor Eq. (A12), (A15)
012 = 095 = 0 for Eq. (A13), (A16)
and

013 = 0y3 = 0 for Eq. (A14). (A17)

So far, simultaneously satisfying Eqs. (A3)—(A5) requires the
existence of zero-value component(s) of vectors O; and O, either
Eq. (A15) or Eq. (A16) or Eq. (A17). Because the points are located on
the sphere with a unit-length radius, there exist only two possi-
bilities that O; and O, have either one zero-value component or two
zero-value components.

(1) One zero-value component

Suppose 011 = 021 = 0. Other suppositions lead to only a different
state of the fabric ellipsoid, as may be shown below. Accordingly,
from Eq. (A12) we know that O;2 = —0y2, and 013 = 023 > O.
Substituting them into Eqs. (A6)—(A8),

0 =key! —¢ (A18)
—2(012)° = key 1 —t (A19)
2(013)% = keg! —t (A20)
Obviously, Egs. (A18)—(A20) becomes valid if and only if
—ke;' —t < 0,and (A21)
kes' —t >0 (A22)

These inequalities, as well as Eq. (A18) and the requirement of
one zero-value component, give a fabric state of
keg! > ke > ke1, or the triaxial ellipsoid. In this state, Egs.
(A13)—(A15) are solved for the positions of O; and O,

S | S |
0, = o [ —% 5 &
! ezl —e51 Negl—e51 |’
3 2 3 2

(A23)

and

o | |
0, = |0 _ [ —% & —&
2 el o1 N\l o1
3 2 3 2

For k > 0, it is fairly easy to know that vectors O1 + O,, 01 x 02
and 01 — O, are parallel to the long, intermediate and short axes of
the fabric ellipsoid, respectively (Fig. Ala), and that

2 -1 -1
(0] & — &
tan? vV = <713) -3 "1

i T
012 & =&

(A24)

(A25)

where Vis the acute angle between either O; or O, and the long axis
of the fabric ellipsoid.

For k < 0, 01 — O3, 01 x Oy and O1 + O3 are parallel to the long,
intermediate and short axes of the fabric ellipsoid, respectively
(Fig. A1b), and

-1 -1

2
0 el —e
tan’ V = (—]2> = 2 1

013 81_1 —63_1

(A26)

These features (see Lisle, 1976) demonstrate that the solutions in
Eqgs. (A23), (A24) are the locales of the poles to the circular sections
of the ellipsoid, thus verifying the above proposition.

(2) Two zero-value components

Suppose 011 = 021 = 012 = 022 = 0. Accordingly, 013 = 023 > 0.
Substituting these known components into Eqs. (A6)—(A8) gives

0 =key! —t (A27)

0 =key! -t (A28)

2(013)% = ke3!' —t (A29)
Eq. (A29) is valid if and only if

kes' —t>0 (A30)

This inequality, as well as Eqs. (A27), (A28) and the requirement
of two zero-value components, gives a fabric state of

kes1 > key! = ke; 1. Itis oblate for (k < 0) or prolate for k > 0.In the
state, both O and O, have a similar orientation, and are parallel to
the short (k < 0) or the long (k > 0) principal axes of the fabric
ellipsoid. They are the solutions of the poles to the circular sections
of the fabric ellipsoid, indeed.

Fig. A1. The fabric state for k > 0 (a) and k < 0 (b), respectively. émax-€int and emin are the long, intermediate and short axes of the fabric ellipsoid. V is the acute angle between either

0; or 0, and the long axis of the fabric ellipsoid.



Y. Shan, W. Xiao / Journal of Structural Geology 33 (2011) 1325—1333 1333

References

Bishop, A.W., 1966. The strength of soils as engineering materials. Ge’otechnique 16,
91-128.

Carey, M.E., Brunier, M.B., 1974. Analyse the’ orique et nume'rique d’'un mod-
e’leme’ canique e’ le'mentaire applique’ a I'e’tude d'une population de failles.
Compte Rendus Hebdomadaires des Se’ances de I’Academie des Sciences 279,
891-894.

De Paor, D.G., 1990. Determination of the triaxial strain ellipsoid from sectional
data. Journal of Structural Geology 12, 131-137.

Fry, N., 1999. Striated faults: visual appreciation of their constraint on possible
palaeostress tensors. Journal of Structural Geology 21, 7—22.

Gendzwill, DJ., Stauffer, M.R., 1981. Analysis of triaxial ellipsoids; their shapes,
plane sections, and plane projections. Mathematical Geology 13, 135—152.
Lanza, R., Meloni, A., 2006. The Earth’s Magnetism: An Introduction for Geologists.

Springer-Verlag, Berlin. 278pp.

Lisle, RJ., 1976. Some macroscopic methods of fabric analysis. Journal of Geology 84,
225-235.

Milton, N.J., 1980. Determination of the strain ellipsoid from measurements on any
three sections. Tectonophysics 64, T19—T27.

Nemcok, M., Lisle, RJ., 1995. A stress inversion procedure for polyphase fault/slip
data sets. Journal of Structural Geology 17, 1445—1453.

Oertel, G., 1978. Strain measurements from the measurement of pebble shapes.
Tectonophysics 50, T1-T7.

Owens, W.H., 1984. The calculation of a best-fit ellipsoid from elliptical sections on
arbitrarily orientated planes. Journal of Structural Geology 6, 571—578.

Ramsay, J.G., 1967. Folding and Fracturing of Rocks. McGraw-Hill, New York. 568pp.

Ramsay, J.G., Huber, M.I, 1983. The Techniques of Modern Structural Geology
Volume 1: Strain Analysis. Academic Press, London. 307pp.

Robin, P.-Y.E, 2002. Determination of fabric and strain ellipsoids from measured
sectional ellipses — theory. Journal of Structural Geology 24, 531-544.

Shan, Y., 2008. An analytical approach for determining strain ellipsoids from
measurements on planar surfaces. Journal of Structural Geology 30, 539—546.

Shan, Y., Fry, N., 2006. The moment method used to infer stress from fault/slip data
in sigma space: invalidity and modification. Journal of Structural Geology 28,
1208—1213.

Shan, Y., Gong, EX,, Li, Z, Lin, G., 2008. Determination of relative strain ellipsoids
from sectional measurements of stretching lineation. Journal of Structural
Geology 30, 682—686.

Shan, Y., Li, Z., 2008. Feasibility of graphic determination of stress from fault/slip
data. Journal of Structural Geology 30, 739—745.

Shan, Y. Suen, H., Lin, G., 2003. Separation of polyphase fault/slip data: an
objective-function algorithm based upon hard division. Journal of Structural
Geology 25, 829—840.

Shao, J., Wang, C., 1984. Determination of strain ellipsoid according to twodimen-
sional data on three or more intersection planes. Mathematical Geology 16,
823-833.

Shimamoto, T., Ikeda, Y., 1976. A simple algebraic method for strain estimation from
ellipsoidal objects. Tectonophysics 36, 315—337.

Shubnikov, A.V., 1960. Principles of Optical Crystallography. Consultants Bur., New
York. 186pp.

Tocher, EE., 1964. Direct stereographic determination of the optic axes from a few
extinction measurements: a progressive elimination technique. Mineralogy
Magazine 33, 780—789.

Wheeler, J., 1989. A concise algebraic method for assessing strain in distributions of
linear objects. Journal of Structural Geology 11, 1007—1010.

Zalohar, J., Vrabec, M., 2007. Paleostress analysis of heterogeneous fault-slip data:
the Gauss method. Journal of Structural Geology 29, 1798—1810.



	 A new macroscopic method of fabric analysis based upon Fresnel’s theorem
	1 Introduction
	2 Fresnel’s theorem
	3 Comparison
	4 Procedure
	5 Tests using artificial examples
	6 Applications
	6.1 Set one
	6.2 Set two
	6.3 Set three

	7 Discussion
	7.1 Relationship between strain and stress analyses
	7.2 Advantages and disadvantages
	7.3 Measurement error

	8 Conclusions
	 Acknowledgment
	 Appendix 
	 References


